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I Elliptic curves and their moduli
We consider the upper half plane

H; :={r € G Im 7 > 0}.

T 1+7

To every point 7 € H; one can associate the lattice
A =Z1+ Z; resp. Er = C/A;.

The quotient E; is a torus.
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It is a compact Riemann surfacet (of genus 1) and at the same time an
algebraic curve (elliptic curve).
One knows from complex function theory that
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E, 2 E. & exists ((Z ) € SL(2,Z) such that 7' =



For this reason we introduce the following action of SL(2,Z) on Hj:

SL(Z,Z) x Hy — Hy
a b b
(¢g) 7 - e

Then by the above we have the following interpretation of the quotient

X°(1) := H,; /SL(2,Z) LN {E7; E; = elliptic curve}/isomorphism.

We call X°(1) the (open) modular curve. The quotient X°(1) carries itself
the structure of a Riemann surface. There is a unique function j : Hy — C
such that

Hy
Wl \
X0(1) = m,/SL(2,Z) =5 C,

i.e. there are ”as many elliptic curves as complex numbers”.
In this sense we can identify X°(1) = C. There is an obvious compacti-
fication
X(1) =P' =CU{oo} = X°(1) U {cusp}.

As a set we obtain this as follows. Let
ﬁl =H; UQU {’LOO}

Then the action of SL(2,Z) on Hj extends to an action on H; and QU {ico}
is one orbit. Hence

X (1) :=H,/SL(2,7Z) = Hy /SL(2,7Z) U (QU {ico})/SL(2,Z),
- X (1) = X%(1) U {oo}.

We can define a topology on X(1), by defining the horocyclic topology on
H; and then taking the quotient topology on X(1). The open sets in the
horocyclic topology on Hy are the usual open sets plus the following



Ur = {7 € Hy;Imjr > r} U {ico}
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It is important for us to understand how we obtain an analytic structure on
X(1). For this purpose we consider the stabilizer of ico in SL(2,7Z). This is

the group
P(icc) = {j: (é le) in € Z}.

This group acts on Hj as follows

1 n
:I:(O 1).Tr—>7'+n.

Taking the ”partial quotient” with respect to P(i0c0) we obtain

H — Hl/P(ZOO):A*:{ZE(C,O<|Z|<1}

T = t=emiT,

WY«

Adding the point {ico} then becomes adding the point 0 to the punctured



disc A*. We thus obtain
X(l) = Xo(l) UA*(s) A(&)

Level structures
Instead of I' = SL(2,Z) one often considers subgroups of I'. The group

T'(n):={M € SL(2,Z); M =1 mod n}
is the principal congruence subgroup of level n. We define
X%n) = Hy /T(n).

This is the (open) modular curve of level n.
We now want to understand the interpretation of X%(n). We consider
the group of n-torsion points on an elliptic curve £

E™ .= {z € E;nz = 0} (& 1Zy X Zy, non-canonically).

E.g. for n = 3:

T T+1

1/3 1

There is a natural symplectic form, the Weil pairing
(,):EM™ xEM™ 57,

(In our case we can define this by:

(G-

Definition A level-n structure on FE is a symplectic basis wy, we of E®)
i.e. a symplectic isomorphism a : E™ — Z,, x Z,.
We then have the following interpretation

XO(m) LN {elliptic curves with a level-n structure}/~
[r] — (En (L [RD) -
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As before we have a compactification of X%(n) given by
X(n) = H;/T(n) = X%(n) U {cusps}.
The number of cusps depends on 7.

Example n =7; X(7) = X°(7) U {24 cusps}. One has g(X(7)) = 3 and
in fact X (7) is isomorphic to the Klein quartic

C = {(wo : 21 : T2); 2321 — T329 — T3TQ = 0}
One has an exact sequence of groups
1—-T(n) - T =SL(2,Z) — SL(2,Z,,) — 0.
Since £1 acts trivially on Hj this gives rise to a Galois covering

X(n) = X(1) = X(n)/PSL(2, Zy,).

Example PSL(2,7Z7) = G1¢s which is the symmetry group of C.

IT Abelian varieties

Let L C ©9 be a lattice of rank 2g i.e. L = Z29 and L spans C? as an
R-vector space.) Then
X=C/L

is a compact g-dimensional torus.

Remark If g > 2 then X will in general not be a projective manifold e.g.

= (6):0)-0)-(7)

Definition An abelian variety is a compact complex torus which is pro-
jective.

Definition A Riemann form with respect to a lattice L is a non-degenerate,
alternating bilinear form
E:LxXL—Z

such that for its R-linear extension
(i) E(z,y) = E(iz,1y),
(ii) E(iz,z) > 0 for z # 0.

Then one has the following well-known result



X is an abelian variety < there exists a Riemann form with respect to L.

In fact, this is easy to understand since
2 2
E € At(L x L,Z) = Hom(/\ " L,Z) = H*(X, Z).
Then
(i) & E € H*(X,Z)n HY = NS(X),
(ii) & If £ € Pic X with ¢;(£) = —FE, then £ > 0.

With respect to a suitable basis of L we have

( Tdy

—dl ; dz c N>0; d1|d2||dg

_dg

Definition We say that E defines a polarization of type (di,...,dg). If
(di,...,d4) =(1,...,1) we call this a principal polarization.

I.e. a polarization is a Riemann form or equivalently a class of an ample
line bundle on X.

0 d

Example If g =1, then £ = (—d 0

) and d = deg L.

Remark Let ¢;(£) = —E. Then we have a homomorphism (which only
depends on ¢;(L£)):
A:X - PiddX =X
r = TiLRL!

where T : A — A denotes translation by z. Then
ker \ = (Z/dl X ... X Z/dg)Q.

Again we want to consider moduli of abelian varieties. We shall first restrict
ourselves to the principally polarized case.
The Siegel space of genus g (Siegel upper half plane) is defined by

Hy, = {7 € Mat(g x ¢,C); 7 = br;Im7 > 0}.
To every point 7 € H; we associate the lattice

L, = lattice spanned by the columns of (7,1,)
A, = CI/L,.



Then L, admits a Riemann form which belongs to a principal polarization.
This form is given by
E(z,y) = zTm(7)%y.

This defines a map

H, — {g-dimensional p.p.a. varieties}
T = (A L;) (a(L;)=—FE).

Let

B ) 0 1\, 0 1,
soon2) = (s (0, W)= (0 1))

This is the integer symplectic group. The group Sp(2g,Z) acts on H, by

M= (g‘ g) .7+ (At + B)(Cr + D).

Clearly this generalizes the usual action of SL(2,7Z) = Sp(2,Z) on Hy. Then

H, /Sp(2g9,Z) = Ag = { p.p.a. varieties} /isomorphism.

The non-principally polarized case
We fix the type of the polarization:

d=(di,...,dy), (di|ds|...|dy).

Then we define

Again we can define a symplectic group
Sp(Ag,Z) = {M € SL(29,Z); MAg'M = A}

In this case Sp(Ag,Z) acts on Hj by

M = <é g) T = (AT+BE¢)(CT+DE¢)71EQ.

We then have

Hy /Sp(Ag, Z) = Ag = Aa,,...a, = {(A, H); H is a polarization
of type d}/isomorphism




Remark In this notation
»Ag = »Al,...,l-

In both cases we can talk about level structures. This corresponds to taking
suitable subgroups I' C Sp(Ag4, Z). We shall return to this.

Questions (1) Are there good compactifications of the modular varieties

Ag?

(2) Given such a compactification, can we then interprete the boundary
points as degenerations of abelian varieties?

IIT Introduction to toric geometry

Fix an integer r > 1. We consider

M = free module of rank rover{Z (M = Z"),
N: = M*:=Hom(M,Z).

Then we have a natural pairing
(,): MxM"—Z.

We define
T :.= HomZ(M,(C*) = M* ® C".

Then T = (C*)" is a torus (algebraic torus). We have

M = Hom(T,C*) = group of characters of T,
M* = Hom(C*,T) = group of 1-parameter subgroups of 7.

We also define
Mgr =M Q7 R; Mﬁé = M*Qz R

Definition (i) A (rational polyhedral) cone is a subset o C M} such that
there exist elements m7,..., m; € M* such that

o= Rzomf + ...+ Rzomz

A cone o is called strictly convez if it does not contain a line.
(ii) If o C M is a cone, then the dual cone is defined by

" :={x € Mg;{z,y) >0 for all y € o}.

Definition Assume 0,7 C My are cones and 7 g o. We say that 7 is a
face of o(T < o), if there is an element m € o such that

T=0nm* ={yca, (my)=0}.

(I.e. 7 is the intersection of o with a hyperplane).



Definition A fan (rational partial polyhedral decomposition) in Mg is a
collection 3 of strictly convex cones such that

(i)oel,r<o=>T1€X,
(ii) 01,02 € X = 01 Nog < 01.

Remark (i) If o is a cone, then ¢ is a cone.

(ii) If o is strictly convex, then ov has maximal dimension (i.e. is not
contained in a hyperplane of My).

If o C My is a cone, then
H,=0nM

is a semi-group. If o is rational polyhedral, then H, is finitely generated,
and hence C[H, ] is a finitely generated C-algebra. Note that if H is a semi-
group, then the semi-group ring C[H] is the vector space generated by X";
h € H with the ring structure X" . X h — Xh+h'  Then we can consider
Spec C[H,]. This is an affine variety.

Now let ¥ = {0} be a fan in M. Then every cone o is strictly convex
and hence its dual cone ¢V is of maximal dimension. We then define

T, = Spec Clc¥ N M] (dimT, =r).

For every cone o € ¥ we consider its dual cone 0¥ C Mg and the affine
variety T,. If 7 < o then ¢¥ C 7V and hence

CleY N M] = C[7¥ n M].
Dually this gives a morphism
T, = Spec C[t¥ N M] < T, = Spec [¢" N M].
In particular {0} € ¥ and
T(oy = Spec C[M] & Spec [Ty, Ty *,..., T, T; .

Ie.
T (2 (C)) =Ty (0c€X).

Definition Let X be a fan in Mg. The torus embedding Ty is defined by
Ty = [[ T,/ ~
oEY

where 1 ~ z9 if 1 € Ty,, 22 € Ty, and there is a cone 7 C o1 N oy such
that z; € T- N T, and 1 = z9 in T;.



Remark (i) Tx is a normal and irreducible variety.
(i) T = T(oy C Tx and the action of T on itself extends to Tx.
(iii) Tx is smooth < T, is smooth for every o € X.
T, is smooth & There is a basis m], ..., m; of M such that
o= Rzoml +...+ Rzomk,k < r. In this
case T, = Ck x (C*)r—*.

Examples
(1) Single cones

(1)

m; 1 / My~ R

o= Rzomf + Rzom;.

Then
oV = Rzoml + RZO’mQ

and
T, = Spec Clz1, zo] = C2.
(i)

m} + 2m3

o= ]RZ()mT + RZO (m‘{ + 2m§)

10



In this case the dual cone is given by

oV = Rzoml + Rzomg + RZO (2’)’)’1,1 — m2).

moe g

&

2mi — moy

H,v = oVNM = Zzoml + Zzomg + ZZ()(le — m2).

We find that T, is the quadric cone given by
T, = Spec (C[X1, X2, X3]/X}? = X2X3) .

(2) Fans

(1) M]]z = R Y= {Ua -0, {0}}7 0= RZOmT'

-m; 0 m]

Then
Ty = SpecClz, '] = C
T = Spec (C[.’El] =2 CoOC = T{O}
T , = SpecClz;'] 2 CoOC = Ty

11



We find that
Ts=T,UT ;UTj/~ =P

(i) Mg = R?
m; “// o Y ={o,7,0} + faces
r
/// T,=CT, =2C?T5s =C?
‘ ‘ ‘ ‘ o s L — L4
1T i
N m{ Ty, = P2.
9
—m] —m;
(iii)
—m] + am} Tt my
— \0
! _
’ N \\ Xy = Fy = P(Op1 @ Op1(—a))

\\\“ // 'm‘{ (Hirzebruch surface)

The Voronoi decomposition (g = 2)
We consider the space
Symy(R) = {M € Mat(2 x 2,R); g ="g}(=R’).

In this we have the cones

Sym;°(R) = {M € Symy(R); M > 0}
Sym;°(R) = {M € Sym,(R); M > 0}.

12



The group GL(2,Z) acts on these spaces by
g: M~ tg_lMgfl.

We define the cone

10 11 00
70 = Rxo (0 0)+R2° (1 1)+R2° (0 1)'

Definition The Voronoi (Legendre) decomposition (of the rational closure
of Symz*(R)) is defined by

Y1 :={g(00);9 € GL(2,Z)} + faces.

The union of these cones covers the entire cone Sym5°(R). (This is a result
in the reduction theory of quadratic forms.

~—

o = {0} = Ty = (C*)3

dime = 1 == T, =2 CxCxC
dime = 2 = T, = C:*xCxC
dime = 3 = T, = C.

The toric variety T%, is a smooth 3-dimensional variety.

IV Shioda modular surfaces

We had already encountered the modular curves X (n) and the interpretation
of these varieties as moduli spaces. We now want to construct a universal
elliptic curve over these varieties. We shall assume n > 3. This implies that
['(n) acts freely. We consider

1 kn In o b
H(n):= 0 a b |;kleZ; € I'(n)
c d
0 ¢ d

13



This is an extension

1— nZxnZ — H(n)—T(n)—>1

I
L

It acts on C x Hy by
L kn in z+knt+lIln ar+b
0 a b|:(z71)— , .
0 ¢ d ct+d cT+d

The quotient has the structure of a fibre space over X%(n)

SO(I) = CxH;/H(n), [z,lT]
X%(n) = Hy /T(n), [7].

The fibre is given by
E,) =C/(nZ7 +nZ) = C/(Z7 + Z).

The elliptic curve E[;] can be given a level-n structure by

(wy,ws) = (7], [1]) € By,

Then S°(n) is the universal elliptic curve with a level-n structure.

Problem Compactify S°(n) over X°(n):

S%(n) C S(n)
| |
XO(n) C X(n).

The problem is then to find the right fibre over each cusp. For symmetry
reasons it is enough to consider the cusp {oo} € X (n).
We first consider the stabilizer at oo, i.e. the group

1 kn In
P= 0 1 rn|;klreZy=zs
0 0 1

We can write this as an extension

1P P> P'>1

14



where

1 0 In
P={(01 rm|;l,rez}=7?
00 1
and
1 kn O
p' 0 1 0]|;keZ y>Z
0 0 1

The group P’ acts on a neighbourhood W of C x {oo} by
1 0 In
0 1 r|:(271)— (2+In,7+7rn).
00 1

We can take the partial quotient

e:W — (Cr)?
(T, z) — (627ri7'/n’627riz/n) — (t,w).

The group P” then acts on e(W), and indeed on (C*)2, by

kn
s (tw) = (R w).

_ o O

1
0 1
0 0
Main idea. (1) Construct a suitable torus embedding (C*)? C T% in such
a way that the action of P” extends to T%.

(2) Glue S°(n) and a suitable neighbourhood of (T%\(C*)?)/P" along the
image e(W)/P".

We set
M=17% N=M"=17%

In My we consider the fan shown in the following figure.

15



—01 Qo 01

—02 02
—03 0.3 -2 0-1 0o 01 o9 03
—04 03 04
—05 05

We set
U:=(1,0), V:=(0,1)

with dual basis
U* = (1,0), V= (0’ 1)'

Let
Up =(k+1,1), Vi = (k,1).

Then
o = ReoUp + RV,
pr. = RV
The dual basis to Uj, V' is given by
Uy = (15 _k)a Vk(_17 k + 1)
Then

O’,\c/ = RZOUk+RZOVk
pl\c/ = RZOVk + RU, = RZOVk + RZOUk + RZO(_UIC)-

This shows that
T, = C* T, =CxC".

Let u,v be the natural coordinates on the torus 7', and let ug, vx be the co-
ordinates of T, = C? corresponding to Uy, V. Then we have the inclusions

Tioy = Toy; (u,0) = (uo™F, u TR L) = (ug, vp).

We also have

Ty, = Top; (ug,vk) > (Ukalvk)
Tpori = Tops (Upg1,Vp41) (vk_,ukv,%).

We then obtain the following picture: We have T = (C*)? — Ty and Ts\T
looks as in the figure below.

16



The next step in the construction is to define an action of the group P” on
Ts which extends that of P on T = (C*)2. We had seen that

1 kn O 1 n 0
P = 0 1 0);keZ)=7Zh, h=1]0 1 0
0 0 1 0 01

We define actions of the generator h on M, resp. M™* by

0 1
tht M—M, m — (1 O>m.

h: M*— M*, m*t — (1 n)m*

—-n 1

Then this defines an action of P” on T%, where it acts on the chain of Plg
as follows

h;: CiJ[ = Cz'—|—n-

The quotient is an n-gon:

Finally we have to glue, i.e. we take
Soo(n) = So(n) UW/P TE/P”

where
o]

X :e(W),

i.e. the interior of the closure of (W) in Tx,. We have then added an n-gon
as the fibre over {co}. This n-gon consists of n copies of C; = P! with
C? = -2.

1

17



V Compactifications of Siegel modular varieties
Recall that the group Sp(2g, Q) acts on Siegel space

H, = {r € Mat(g x g,C);7 = '7,Im7 > 0}
by

(é’ g) t 7 (A7 + B)(CT + D)™

Now let I' C Sp(2g,Q) be an arithmetic subgroup, i.e.
[[, T NSp(29,Z)] < o0, [Sp(2¢g,Z),T' NSp(29,2Z)] < oo.
Then T" acts properly discontinuously on Hy. Let
A(T) =H,/T (Siegel modular variety).
Then one has the following properties of A(T'):

o A(T') is a V-manifold (i.e. has only finite quotient singularities). (If
g =1, then A(T") is smooth.).

e A(T) is normal.
o dim A(T') = 3¢9 — 3 =dimHj.
o A(T) is quasi-projective (but not projective).

Problem Construct a ”good” compactification of A,.

(1) Satake compactification A(—)
This is defined via modular forms.

PN

e A(—) is normal.

(_

(—) tends to have complicated singularities.

°
>

is a "minimal” compactification.

PN

e A(—) has no functorial interpretation. I.e. the points on the

boundary A(—)\.A(T') do not correspond to degenerations of abelian
varieties.

Asaset Ag= Ay [ Ag—111... 11 A1 1] Ao.

(2) Toroidal compactifications

Igusa constructed a partial resolution of ./Tlg by blowing up along the
boundary. Igusa’s compactification is an example of a toroidal com-
pactification. Let A(T)* be a toroidal compactification. Then one has:

18



e A(T")* depends on the choice of certain fans.

o A(T)* is normal.

e The fans can be chosen such that A(T')* is a V-manifold.
e codim A(T)*\A(T) = 1.

e For good choices of the fan A(T")* is projective.

The following result is crucial

Theorem V.0.1 (Alexeev-Nakamura) Let A7°" be the Voronoi compact-
ification of Ag. Then AY®" has a modular interpretation in terms of degen-
erations of abelian varieties.

Remark If g =1, then all compactifications coincide.

Toroidal compactifications (of A;)

In this section I want to outline the construction of toroidal compactifica-
tions. As one can see all the essential steps already in the case g = 2, I will
restrict to this case.

We had already encountered the cusps in the case ¢ = 1. To enumerate
all cusps in our situation we look at the following:

e lines [ C Q* (i.e. isotropic subspace of Q* of dimension 1)
e isotropic planes h C Q*.

Given an arithmetic subgroup I' C Sp(4,Q) we then define an equivalence
relation as follows

li ~1ly: < exists g € I' with g(ll) =1
hi ~ ho : & exists g € T with g(hl) = ho.

The Titsbuilding T (T) is the following graph:

e vertices: [I]; [CQ', diml=1
[]; hC @, dimh = 2,h is isotropic.
Here [f] denotes the equivalence class of a line, resp. a plane.

l l
o edges: [o]%[o]ﬁ [ C h for some representatives.

In the general case one has to consider all isotropic subspaces U C Q?9.
Examples (1) I' = Sp(4,Z). In this case the Tits building is

[ e
[ J [ J ;

I =Qes;h = Qes + Qes.

19



(2) Let p > 3 be a prime number and let

7Z 7 7 pZ
lev ,__ oy pZ pZ pZ pQZ
I, ={9€5p(4,Q ;9-1¢ Z Z 7 pL b

Z 7 7 9pZ

This group defines the Siegel modular variety Alf’; which parametrises (1, p)-
polarized abelian surfaces with a canonical level structure. In this case the

Titsbuilding looks as in the figure below.

log) o)

l —1 —1
(Pg-a,550)

We have
lo = Q(Oa 0,1, O)a l(a,b) = Q(Oa a,0, b)
and
hia:e) = Lo Al(ap)
where

(a,b) € (Zp x Zp\{(0,0)})/+1; [a: 0] € P'(Z3).
One then associates to each line [ or plane h a parabolic subgroup, namely
P(l) ={g € ;9(1) =1},
P(h) ={g €T;g(h) = h}.
Example I'=Sp(4,Z)
(i) For I = Q(lp) we have

b

P(l) = se=x1;m,n, s, € Z; (Z d) € SL(2,7Z)

(= RN
o oo 3
¥ M %X O
QO >3

20



(ii) For h = Qe3 + Qes we have

P(h) = { (tQO_l g) (102 i) .Q € GL(2,Z); S = 'S € Sym(Q,Z)}.

We now "add a cusp” in the direction of each vertex of the Titsbuilding and
then glue the various partial compactifications.

Corank 1 boundary components
There is an exact sequence

1— P'(I) -»P()—P"(l) > 1.
|
Z

In the case of I' = Sp(4,Z) one has

Pll) =

S o O
S O =
O = O ®

The group P’(l) acts on Hy by

1T T2 TL+8 To
S — .
T2 T3 T2 T3

We can identify the quotient P”(l) with

e m n 0 b
P"(l) = 0 a bl;e==xl;mneZ; (c d) € SL(2,7Z)
0 ¢ d

1. Step: We take the partial quotient with respect to P'(l):
e(l) :tHpb, — C'xCxHy

(7’1 Tg) (€2 1y, 13) |

T2 T3

Then we add the cusp {0} x C x H;. The action of P”(l) on Hy defines an
action of P"(l) on e(l)(Hy). This action extends to {0} x C x H; where it
acts as in the construction of the Shioda modular surface. Let

o

X(1) :==e(l)(Hy) .
Note that this contains {0} x C x H; and define

Y(l) == X(1)/P" ().

21



This defines a neighbourhood of ”"the cusp [”. What we have added is a
surface C x Hj /P"(l) which is the open Shioda modular surface of level 1.
Corank 2 boundary components

Here too we have an exact sequence

1— P'(h) — P(h)— P(HR")—>1.
Tt
ZS

In the case of I' = Sp(4,Z) one has

Pl(h) — {(102 ]i) ;S = tS € Sym(Q,Z)},
P"(h) =2 GL(2,Z).

The group P'(h) acts on Hy as follows

81 S2\ . (M1 To s 1+ 81 T2+ 82
S92 83 ) T2 T3 To + 82 T3+ 83 )
1. Step: We take the partial quotient with respect to P’(h). This defines a

map

e(h): Hy +— (C*)2=T

T T ; ; ;
( 1 2) (tla t2, t3) — (627rz71 , eQm’rz’ 627rz7'3)_
T2 T3

We now consider a torus embedding of the torus 7. In order to do this one
must choose a fan . This fan must cover the rational closure of Symj (R).
Here we take the Legendre (=second Voronoi) fan. This gives us an embed-
ding

Tt C Iy

Let

e}

X (h) := X5 (h) :=e(h)(Hy) .

The group P”(h) acts on e(h)(H;) and this action extends to Tx and induces
an action on X (h). The crucial point here is that P"(h) & GL(2,Z) and
this group acts on Sym,(R) by

Q: M 'Q ' MQL
This action preserves the Voronoi decomposition. One then takes
Y (h) := X (h)/P"(h).

This gives a neighbourhood of "the cusp h”.

22



newly added

/

Glueing process
The process of adding the cusps [ and h is not independent. Assume that
[ C h. Then one has P(l) C P(h) and we have a natural map

n(l,h): X(1) = X (h)
which is compatible with the action of P”(l) and P”(h). It induces a map
7(l,h): Y() = Y (h).
We then identify
zeY()~a2 €Y(h) &z =7, h)(z).

The above process has to be done for all cusps.
This leads us to the Voronoi compactification A_}{“ of A,. A?I/Or is a
projective variety (Alexeev).

VI Degenerations of abelian varieties:
Preparations

The general question which we want to ask is the following: Let I' C
Sp(2g,Q) be some arithmetic subgroup and

A(T') = Hy /T = some moduli space of abelian varieties.

Let A(T')* be (some) compactification of A(T).

Question Can we interprete the "boundary points”, i.e. the points A(T")*\.A(T")

in terms of degenerate abelian varieties?
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Example Shioda modular surfaces
Let
[(n):={M € SL(2,Z); M =1 mod n}

and
XO%(n) :=H; /T(n), X(n) = X%(n) U {cusps}.

We have constructed the Shioda modular surfaces S(n) (for n > 3) which
are fibred over X (n) and have n-gons over the cusps:

The surfaces S(n) have a group of sections isomorphic to Zy X Zy. One
can use these sections to define level-n structures on each smooth fibre of
S(n). In this way S°(n) becomes the universal elliptic curve with a level-n
structure. The n-gons can be interpreted as degenerate elliptic curves with
a level-n structure. This can be made precise by saying that S(n) represents
a suitably defined functor.

In the case n = 3 we consider the Hesse-pencil

Cy: .778 + 33? + .’Eg —3dxpz1290 = 0.

Then Cy is smooth if and only if A # 1,p,p%,00,(p = €*™/3). If Cy is
singular, then it is a triangle:

Let Pi,..., Py be the base points of the pencil Cy. Blowing up P? in

these points, we obtain a surface P2 = P2(Py,..., Py) which has a map to
P!. Then

Cy C P2 = S(3)

A € P! o X(3)

24



and the 4 singular members of the pencil C) are the 4 singular fibres in S(3)
over the cusps of X (3).

In the case of I' = Sp(2g, Z) we have the second Voronoi compactification
AVor.
g

Theorem VI1.0.2 (Alexeev, Nakamura) .A;’OT is a coarse moduli scheme
for the functor of PSQAV’s (principally polarized stable quasi-abelian varie-
ties).

I want to describe the construction which leads to these degenerations. More
generally Alexeev has introduced the concept of stable semi-abelic varieties
(SSAV’s). This leads to a projective variety .A*g and A_}}/"r is one component
of Ag .

Semi-abelian varieties

A crucial concept which we need is that of semi-abelian varieties.

Definition A semi-abelian variety G is a group scheme which is an exten-
sion
1-2T—-G—>A->1

where T is a torus (7' (C*)") and A is an abelian variety.
Semi-abelian varieties appear naturally when one considers degenera-
tions of abelian varieties.

(1) Everybody has seen the degenerations of a plane cubic to a nodal curve:

Topologically this corresponds to a ”vanishing cycle”:
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- Plwith 2 points
identified

In more algebraic terms
E =C/(Z+Z1)=C"/Z (Z acts by multiplication with ¢"; ¢ = ¢*™7).

If 7 — 400, then ¢ — 0 and one obtains C* = P'\{0, co}.
(2) We consider a genus 2 example. Let 7 € Hy and consider the lattice L,
spanned by the columns of the matrix

T T2 1 0
T2 T3 01' 1

) ~» L, = Ze| + Zes + Zes + Zey.
The associated abelian surface is

A, =C*/L, = C?/7* = (C*)? /22
Here we have divided by L, in two steps. The first step is

C? — (C*)? = C?/(Zes + Zey),
(21,z2) — (627rz'z1’€27riz2) — (wl,wQ)‘

The group Z2? = Ze; + Zes then acts on (C*)? by multiplication as follows:

e1: (wl,wg) — (tlwl,tQUJQ) (tl = eZMTI,tQ = €2mT2, i3 = 627”7—3),
€9 : (wl,wg) = (t2w1,t3w2).

Now assume that 73 — 400. Then the action of e is no longer free when
t3 = 0. But we can still consider

G = C?/(Zey + Zes + Zes) = (C*)? | Zey.
This then has the following structure

1-1C -G —E, =C/(Zn +Z)—1
[wl,wg] — [wl].

This is a semi-abelian surface. Geometrically it is a C*-bundle over E,:
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E,,

By adding the 0-section and the section at infinity we can embed G as an
open set in a P-bundle over F,.

Classifying homomorphism
Let G be a semi-abelian variety

1-T—-G—A—=1

and let X be the character group of the torus 7. Every such G is given by
a classifiying homomorphism

c: X — A=PicA.
For z € X the point ¢(z) € Pic’A is a line bundle on A which we denote by
Oy = c(x).

Such a homomorphism defines G by

G = Spec @ O,

zeX

where we consider O, as an O 4-algebra.

Example Let us consider example (2). We define
e:=[n] € B, =C/(Z + Zn).

Then the homomorphism c¢ is given by

c:Z — Pi’E, = E,
1 — O(e—0).

Then one has G C P(O @ O(e — 0)).

Remark We shall then obtain a degenerate abelian surface as follows
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x+e

X =P(O®O(e —0))/ D G.

Delaunay and Voronoi cells
Let X be a lattice (X = ZF) and Xg = X @7 R(= R).

Definition A cell § is a compact convex polytype in Xg whose vertices lie
in X.
Let
S: XxX >R

be a symmetric, positive definite bilinear form. This induces a metric and
hence a norm || - || = || - ||s on XRg.

Definition 7§
(i) Let a € Xg. We say that a lattice point z € X is a-nearest if

|lz — al| = min{||z’ — a|; 2" € X}.

(ii) A Delaunay cell with respect to S is the convex hull of all lattice points
which are a-nearest to some point a € X.

The union of all Delaunay cells with respect to a given form S gives the
Delauny decomposition A which is defined by S.

28



Examples X =72
(1) (2)

Definition Let § be a Delaunay cell with respect to S. Then all points in
Xr which define § form again a cell 6. This is the Voronoi cell which is dual
to the Delaunay cell.

The dotted lines give the Voronoi cells.

Remark The connection with the Voronoi decomposition of Syms°(R) is
the following. All matrices in the relative interior of a cone belonging to
the second Voronoi decomposition of SmeZO(R) define the same Delaunay
decomposition in RY.

Another way of looking at Delaunay decompositions is as follows: Let
q = gs by the quadratic form defined by S and consider

{(¢(z),z);z € X} C Xg :=R & Xg.

This is a multifaceted paraboloid and the projection of the facets to X
gives precisely the Delaunay cells.

Example X =7Z; g5 = z°

The following pictures shows how one obtains the unique Delaunay de-
composition of R.
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Definition Let X bealattice and Y C X a sublattice of finite index. A cell
decomposition A of Xy is called a semi- Delaunay decomposition with respect
to (Y, X) if there exists a positive-definite symmetric bilinear function S on
X x X and elements 7(Z) € R;£ € X/Y such that A is the projection onto
Xgr of the lower envelope of the set

{(g(z) + r(Z);z),z € X} C Xg = R Xg.

Example (1) X =7Z,Y = 2Z; q(z) = z%r(0) = r(1) = 0.

Here we obtain intervals of length 1.
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(2) X =Z;Y =2Z,q(z) = 2%r(0) = 0,7(1) = 1
In this case we obtain intervals of length 2.

More remarks on toric geometry
Let 6 C Xk be a cell. Then we consider the shift

{1}X5CXR:R@XR.

{1} x ¢

Xr

We take the cone over this set with vertex 0. In this way we obtain the
semi-group

Ss:=Z& XN (Cone over{l} x d)

~ J/
~~

Cone §
The elements of S5 are of the form x = (d,z);d € Z>¢,z € X. The ring

Ry := C[Ss] = Cl(z; x € S5
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is a C-algebra. We can consider R; as a gradediC-algebra via

deg(x) := deg((d, z)) :=d.

Let
Ps := Proj Ry.

This is a projective variety and as such it carries a natural polarization

Opy(1).

Examples (1) We start with the interval in R of length 1.

)

XRr
0 1
The cone over § looks as shown below.
R
(1,0) (1,1)
Xr
R(5 = (C[:I;a y]a *’L‘;(l’ 0),:[/2(0, 1)7

1

Py = Proj(Clz, y]) = P,
Ops (1) = Op1(1).

(2) Next we consider the interval of length 2.
)

R;s has 3 generators, namely:

(1,00, $1,1)>C1,2) (ZZ0, 71, T2)

0 1 2
The cone over § is now given by

Loy 4.2 Since (1,0) + (1,2) = 2(1,1)

we have the relation Tz = 2.

In this case we find

Ps = Proj (Clzg, x1, 2]/ (22 — mox2)) = (P!, Op1(2)).
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(3) The standard simplex in R? gives the projective plane.

0,1
©.1) R; has 3 generators 1 ((1,0,00)5 $(1,(1,0))s  S(1,(0,1))
I It
1) and no relations. To T To
(0,0) (1,0)

P = Proj Clzo, 21, 72] = (P?, Op2(1)).

(4) The standard square in R? gives the quadric.

(0,0) (1,1)
1) R has 4 generators:
C(1,0,0)>  S(1,(1,0)) S0, §(1,(1,1))
I I Ii; I
X X X X
(0,00 (1,0) ’ ' ’ ’

We have one relation:
(1,(0,0)) + (1, (1,1)) = (1,(0,1)) + (1, (1,0)).
Hence we obtain here a quadric:

P5 = PI‘Oj (C[$0,$1,$2,$3]/($0$3 - :L‘ll‘g)) = (]Pl X ]Pl, Oﬂmxpl(l, 1))

VII Alexeev’s construction

In this section we describe a set of degeneration data from which one can
construct the central fibre of a degeneration of abelian varieties:

(0) A polarized abelian variety (A, L) where L represents a polarization
A: A — A=Pic®(A) of type d = (di,...,d).

(1) (i) A semi-abelian variety
1-T—-G—A—1

given by a morphism c: X — A where X 2 79" is the character
group of the torus 1" = (C*)9".

33



(ii) A second semi-abelian variety
15T G- A1
given by a homomorphism ‘c : Y — A where Y is the character

group of the torus 7.

(2) In inclusion ¢ : Y — X of lattices with finite cokernel such that
cop=2No'lec.

(3) A cell decomposition A of Xg = X ® R which is periodic with respect
to Y and which has only finitely many cells modulo Y.

(4) Let P be the (birigidified) PoincarE bundle. Then we are given a
symmetric trivialization

t —1
TY xX 1Y><X — ( CXC)*PAXE

of C*-biextensions.

(Birigidified means that we have chosen isomorphisms P4y (s} = £

and P03 X A0 7 and symmetric means that 7|y «y is symmetric.)

The construction
Let § be a cell of A. We consider the cone

Cone 6 C Xg = R Xg.

Conetd /

To each x = (d,z) € X =Z @ X we associate the line bundle
M, = L% @ c(z) = L ® O,.

We shall assume that we have a rigidification of £. Then M, also has a
natural rigidification at the origin and we have a canonical isomorphism of
rigidified sheaves

MX1+X2 = MX1 ® sz'
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All these sheaves are O 4-algebras. Recall the semi-group
S5 = Cone 6 N (Z & X).
We then consider the scheme
Vs = Projp ,CIMy; x € S5].

This is a scheme over A, i.e. it comes with a natural projection onto A. We
now want to glue the varieties V5, and Vs, along Vi, ns,. In order to do this,
we introduce formal variables

Cy = My.

Let
Cone A := U Cone § = {(d,z) € Z® X;d > 0} U{(0,0)}.
deA

Then we define a semi-group algebra
R := C[{y;x € Cone A]
where the multiplication is defined as follows

Cxi+xe  if X1, X2 are cellmates (i.e. belong
Cx1 " Cxs == to a common cell)
0 otherwise.

We define B
(V,05(1)) = (Proj R, Op.j(r)(1))-

We now want to define an action of ¥ on (V, O(1)). We first notice that
Y acts on A via ‘c. For each y € Y we have to define an isomorphism

~ *
R = Ty, R
This is the same as giving a section

e Y XZxX 5 PlL e (exe) P L.
dEZ

This map € can be described as follows:
(i) 8\Y><{0}><X =Ty xX-

(ii) elyxqiyxqoy =% : 1y — tc* £71 where 9 is a cubical trivialization.

(111) s(y,d,x) = Ilb(y)d’r(yax)'
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Here 9 can be chosen arbitrarily, the find result will not depend on the
choice of 1. N
The group Y acts properly discontinuously on V. We set

(V,0v(1) := (V,05(1))/Y

Properties of (V,0y(1)) :
(1) V is projective, Oy (1) is an ample line bundle, dimV = ¢’ + ¢".
(2) V is semi-normal.

(3) G acts on V with a finite number of orbits. The stabilizer G, of every
point z € V is reduced, connected and lies in the toric part of G.

Definition A variety (V, Oy (1)) with properties (1)-(3) is called a (polar-
ized) stable semi-abelic variety (PSSAV).
Remark

(i) K(Ov(1)) =dy...dy - |X/Y].

(ii) Let zp € V be a point in a maximal dimensional stratum of V. Then
G — V,g — gz( defines an immersion of G into V.

Theorem VII.0.3 (Alexeev) The following holds

(i) The variety (V,0y(1))) deforms to a smooth abelian variety if and only
if the cell decomposition A of Xgr is a semi-Delaunay decomposition
with respect to (Y, X).

(ii) The type of the polarization is given by the elementary divisors of the
group H(A) x XY where H()) is a totally isotropic subgroup of K(\).
In particular (V,Oy (1)) deforms to a p.p.a.v. if and only if Y = X
and A is a Delaunay decomposition.

Remark Assume that A is a Delaunay decomposition with respect to a
form S. Let Sy be a positive definite symmetric bilinear form which defines
the same Delaunay decomposition. Then 7(z,y) and

70(w,y) = 7(2,9)cEY  (ceC)
define the same variety V.

Example (1) We first study degenerations of elliptic curves.
(a) The standard degeneration of an elliptic curve with a degree n divisor is
a fibre of type I,,. This arises as follows:

A={1},G='G=C; X=7Z,Y =nZ C 7.
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Co Cs

Co

deg Oy (1)|c, =1

(b) In order to obtain a nodal curve with a degree n polarization we take
an interval of length n:

(2) Here we list all degenerations of principally polarized abelian surfaces
with trivial abelian part.

fa)A={1}; G=G=(C)% X =Y =72

The standard form (é (1)) defines the Delaunay decomposition of R? into
planes.

T=0b:7?%x7% - C*,
by := b(el,eg) e C.

The result is a P! x P with opposite sides glued

V=P xP'/
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b()LE

r e — > ¢ box

(b) Again we take

A={1}; G='G=(C")% X=Y=12% r arbitrary.
2
1 2

The result is a union of two projective planes glued as shown in the picture
below. Here lines marked with the same symbol are identified as well as

The form 1) defines the Delaunay decomposition of R? into triangles.

V =P2][P?/.,

2 P2

all the points marked. The restriction of Oy (1) to each plane is Op2(1).
(c) To obtain a degeneration with a non-principal polarization we can take
a proper sublattice Y of X, e.g.

X =72% Y = Z2e, + Zes

tye

T [ ? - T ° bgm

To

P! x p! Pl x p!
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We obtain two quadrics with identifications as indicated in the picture above.
Here again by = b(eq, e3).

(3) Next we describe degenerations of principally polarized abelian surfaces
with a 1-dimensional abelian part.

A=E 1 =C/(Zn+Z);X =Y =Z;

t

c=": Z Pic’ By,
1

[12] =:e.

- = Eiry)
H

Then
O(1) = Oy, ,([73] - 0) =: M.

We choose the standard decomposition of Xgr = X ®z R, namely

-2 -1 0 1 2 3

The bilinear form 7 can be chosen arbitrarily. In this case G = !G is a
C*-bundle. It is the line bundle M with the 0-section removed.

T +e

G ='GCPO®M).

E

Adding the 0-section and the section at infinity one obtains the P!-bundle
P(O @ M). Then

V=POaoM)/.
where z ~ z + [1»]. Note that the shift e equals M under the natural iden-
— 100 7'2)

tification By, = PicOE’[T3]. This degeneration corresponds to < 7_2 T

(4) Finally we consider non-principal degenerations. Take A = FE. as
above. On A we consider the polarization A : Ej;,] — E[TS], z +— 2z. We set

Y =27 Cc X = 7. Then we have

2 € 22 < 7Z > 1

Lol ]

po € By ——FEy; > q-
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Note that
2py = 2qo-
Let

M = OE[ (pO - O)

Then G is the C*-bundle given by removing the 0-section from M.

73]

(a) We first choose A to be the decomposition of the line R into intervals of
length 1:

Then we obtain

PO & M)

¢ V =P & M) [[PO & M)/

P(O & M)

The polarization has degree 1 on the fibres of the ruled surfaces and degree
2 on the sections.

(b) Now let A be given by intervals of length 2:

-2 -1 0 1 2 3 4

Then one obtains
We obtain
V=POdM)/.
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T +e

PO & M)

The degree of the polarization is 2, both on the fibres of the ruled surface
and on the sections. In the case py = qp this is the same variety as in (3)
with the square of the polarization.

(5) In the (1,7)-case we obtain the following possibilities

(a) (b)

r4e T+ Te
P(Op & M) P(Or ® M)
¢ M ZOE(76—0) MZOE(B—O)
A
\/
PO & M)
E

VIII The case of Jacobians

In this chapter I want to explain (following [A1]) how one can compactify the
Jacobian J(C) of a nodal curve C. Let C be a nodal curve, i.e. a connected
projective curve with a most nodes as singularities and let v : N — C be
the normalization of C.
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The Jacobian of C is defined by
J(C) = {L € Pic C; L is algebraically equivalent to O¢}.
By pulling back to the normalization N we obtain an exact sequence
(x*) 1= (C) = J(C)— J(N)— 1.

This shows that J(C) is a semi-abelian variety. We first want to understand
this extension.

Given a nodal curve C we associate to it its dual graph I'(C). The
components of C correspond to the vertices of I'(C) and the nodes of C
correspond to the edges of I'(C).

Examples (1)

€1

1 U2

i

€2

€2 €1

i Cy
2) &

= —

We set
C()(F,Z) = @ Zvi , Cl (F,Z) = @ Z€j.
el JjeJ

Here I parametrizes the components of C and J parametrizes the nodes of
the curve C.
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Now we choose an orientation on I'(C) (it will not matter which one).
This allows us to define a boundary operator

9:C.(1,Z) — Co(,Z)

— /
de; = v — U,

i, if e; goes from v; to v.

We define
H\(T',Z) := ker 0.

Examples In the above example we find

(1) F(C) = Zey+ Zes + Zes,
H\(T,Z) = Z(e1— e3) + Z(ez — e3).
(2) F(C) = Ze1 + Zey = Hy (P, Z)

Every edge e; determines two points Pj+, P;" on the normalization N. If
ej is not a loop, then we choose Pj+ on C; and Pj* and Cy, if e; goes from v;
to v;. Otherwise we choose Pj+ and P arbitrarily. In this way we obtain
a homomorphism

c:C1(I,Z) — Pic(N)

e; ON(P;_—P]-_).

This restricts to a homomorphism
c: H\(T,Z) — Pic®(N) = J(N) = J(N).
By our general theory of semi-abelian varieties this defines an extension
1— HY(,Z)®@C" - G — J(N) — 1.

This extension can be identified with (x).

Set of data for the compactified Jacobian
(JO) The underlieing abelian variety is
A=J(N); da=c1(On(0))
where © is the theta divisor.

(J1) (i) G = J(C), ie.

————

1 HY,2)®C* - G=J(C) = J(N)=J(N) =1
is given by ¢ : X := Hy (T, 1Z) — J(N).

(i) ‘G = G.
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J2) Y=X;d=id: Y=X—>X.
(J3) We consider the standard form S on C;(T',R) given by
S(ei,ej) = ;.

The corresponding Delaunay decomposition Del of C1(T',R) is that
into standard cubes. We intersect this with H;(T', R), i.e.

A =Del N H{(T,R).
More precisely, we mean the following
A ={6NH(T,R);d € A; rel. int. § N H{(T,R) # 0}.
Examples In the examples given above we find

(2)
Hy(T,Z) = C\(T,Z)

€9 A

€1

Hl(F,Z) = Z(61 - 63) D Z(eg - 63)

€2 — €3

: e/ e —es3
1

€1

This gives the following picture
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h2:€2—63

h1 — €1 — €3
H,(T,Z) = Zhy + Zhs.

Alternatively, we can restrict the form S from C,(T',Z) to Hi(T',Z)
and then take the associated Delaunay decomposition of H;(T',R). In
particular, A is a Delaunay decomposition.

Before I can define the fourth datum 7x « x it is necessary to say some-
thing about the Deligne pairing. For this purpose let B be an arbitrary
smooth curve (we shall later put B = N). Let f,g be two rational
functions on B with div(f) Ndiv(g) = (. One then defines

(f,9) = f(div(g)) = [] f(=)

rEB

Here v;(g) is the valuation of g at x and one has (f,g) = (g, f) by a
result of Weil.

Example Let B = P! be a rational curve,

Then
c—a d—b_a—c b—d

(f’g):c—b'd—a_a—d'b—c

This is the classical cross ratio.

= (g9, f)-

Now let f € H°(L),g € H°(M) be two sections of line bundles L and
M with div(f) Ndiv(g) = 0. Then we can still define

(£.9) = f(div(g)) = [ f(@)*@ € Q) LF"®) =: (L, M),

r€B z€EB

One can then show that

(f,9) = (~1)debdeM(g, f).

One also shows that for other sections f’, ¢’ one has a natural identi-
fication
(L, M)f,g - (L, M)fl’gl =: (L, M)
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When L, M vary in Pic’B one obtains in this way a line bundle on
Pic’ B x Pic’ B which is the inverse of the Poincaré-bundle.

Now we return to the case of Jacobians. Let ex,e; € C1(T,1Z). Ifk # 1
then P,;" — P and Pl+ — P, have disjoint support and the Deligne
pairing defines an element

(ex,er) € Vii(= suitable vector space of dimension 1).

If & = [, then we still have the vector space Vi, but no elements
(er,er).- We choose(eg,er) € Vi arbitrarily. This defines by linearity
a map

(,):C(T,Z) x Ci(T, Z) - P Vi
k,l

Restricting this to H;(I',Z) and identifying the spaces Vi; with the
stalks of the inverse of the Poincaré-bundle we obtain a pairing

(,) Hi(0,2) x Hi(T,2) = D Pudayetw)

z,yeX

——

where P is the Poincaré-bundle on J(N) x J(N) and
te=c: X — J(N) :m.
(J4) The symmetric trivialization is given by

Txxx : lxxxt 1= (fexo)*P!
TXXX(w’y) = (-T,y)

These data define a polarized semi-abelic variety J(C), the compacti-
fied Jacobian of C.

Examples (1) Here we have

and this gives

J(C)

P2 T P?/ .



C 1 C"2

C=0C+Co.

The form 7x«x plays no role here.

(2) Here we have

The form 7x«x is given by

TXXX:b!ZZXZQ—)C*
(1 by
b_(bo 1).

(We can choose (e1,e1), (€2, e2) arbitrarily). We obtain
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.’L‘b()

The parameter by is the cross ratio of the four points in P! = N lieing
over the 2 nodes of C.

. . . . > P
P Pr P Py 1
Py
(3) Now let E be an elliptic curve.
E
€1 €2

e:=e; —e
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We then obtain

J(C) = X/, X =P(O@®Oe - 0)).
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